Spark >= 2.4
If needed, schema can be determined using schema_of_json
function (please note that this assumes that an arbitrary row is a valid representative of the schema).
import org.apache.spark.sql.functions.{lit, schema_of_json, from_json} import collection.JavaConverters._ val schema = schema_of_json(lit(df.select($"jsonData").as[String].first)) df.withColumn("jsonData", from_json($"jsonData", schema, Map[String, String]().asJava))
Spark >= 2.1
You can use from_json
function:
import org.apache.spark.sql.functions.from_json import org.apache.spark.sql.types._ val schema = StructType(Seq( StructField("k", StringType, true), StructField("v", DoubleType, true) )) df.withColumn("jsonData", from_json($"jsonData", schema))
Spark >= 1.6
You can use get_json_object
which takes a column and a path:
import org.apache.spark.sql.functions.get_json_object val exprs = Seq("k", "v").map( c => get_json_object($"jsonData", s"$$.$c").alias(c)) df.select($"*" +: exprs: _*)
and extracts fields to individual strings which can be further casted to expected types.
The path
argument is expressed using dot syntax, with leading $.
denoting document root (since the code above uses string interpolation $
has to be escaped, hence $$.
).
Spark <= 1.5:
Is this currently possible?
As far as I know it is not directly possible. You can try something similar to this:
val df = sc.parallelize(Seq( ("1", """{"k": "foo", "v": 1.0}""", "some_other_field_1"), ("2", """{"k": "bar", "v": 3.0}""", "some_other_field_2") )).toDF("key", "jsonData", "blobData")
I assume that blob
field cannot be represented in JSON. Otherwise you cab omit splitting and joining:
import org.apache.spark.sql.Row val blobs = df.drop("jsonData").withColumnRenamed("key", "bkey") val jsons = sqlContext.read.json(df.drop("blobData").map{ case Row(key: String, json: String) => s"""{"key": "$key", "jsonData": $json}""" }) val parsed = jsons.join(blobs, $"key" === $"bkey").drop("bkey") parsed.printSchema // root // |-- jsonData: struct (nullable = true) // | |-- k: string (nullable = true) // | |-- v: double (nullable = true) // |-- key: long (nullable = true) // |-- blobData: string (nullable = true)
An alternative (cheaper, although more complex) approach is to use an UDF to parse JSON and output a struct
or map
column. For example something like this:
import net.liftweb.json.parse case class KV(k: String, v: Int) val parseJson = udf((s: String) => { implicit val formats = net.liftweb.json.DefaultFormats parse(s).extract[KV] }) val parsed = df.withColumn("parsedJSON", parseJson($"jsonData")) parsed.show // +---+--------------------+------------------+----------+ // |key| jsonData| blobData|parsedJSON| // +---+--------------------+------------------+----------+ // | 1|{"k": "foo", "v":...|some_other_field_1| [foo,1]| // | 2|{"k": "bar", "v":...|some_other_field_2| [bar,3]| // +---+--------------------+------------------+----------+ parsed.printSchema // root // |-- key: string (nullable = true) // |-- jsonData: string (nullable = true) // |-- blobData: string (nullable = true) // |-- parsedJSON: struct (nullable = true) // | |-- k: string (nullable = true) // | |-- v: integer (nullable = false)